Testbed-12 Web Feature Service
Synchronization

Table of Contents

I 6 L0 0T 16 [0 o) 4 L 7
I 00) 7
1.2. Document contributor contact POINtS.ottt i i 7
1.3. Change FeqUESTES . . .ottt 7
14 FUture WOrK .. e 7
1S FOTEWATA . oottt e 8

2RI EIICES . . oottt e 9

3. Terms and definitions.ottt e 10
3.1 attribute <XV > . e 10
R 70720 0§ =) 4 X 10
3.3, element <X L > . .. e 10
B FEATUT . . oottt e 10
3.5. feature Identifier o e 10
3.6. fIlter EXPIeSSION . . . oottt e 10
K T 1<) it [PP 10
3.8. Multipurpose Internet Mail Extensions (MIME) type ...ttt 11
3.9. namespace <XML> e 11
310, OPEIAtION oo v vttt ettt et e 11
R R 0 0 <3 o /e 11
R T0 /000 <10 11 o P 11
3 13, TOIMOTE TESOULCE . . o v vttt et ettt e et et e e et ettt et et et e e e 11
R =T 1D =T 11
R S TR 11 10) £ 11
3 L6, SCNBIMIA . . ottt 12
3.17.schema <XML Schema> i e e 12
R 0 R 7) o 12
300, ST VICE. . . ittt ettt e e e e 12
3.20. service metadata | capabilities document. oo i 12
3.21. Uniform Resource Identifier. e 12

4. AbDreviated teIINS.ottt 13

TR =3 a4 1= P 14

6. New Requirements Statementuuuu ittt 15
6.1. STAtUS QUIO . . oottt et e e e 15
6.2. Requirements StateMentttt e 15

7. Peer-to-peer enterprise web feature server synchronization 16
7% 0 § 4o oo o 10 (0 o) ¢ P 16
7.2, COMPONEILS. . o ottt ettt ettt et ettt ittt ittt i 16

7.3. SyNChronizing features. e e 18

72 20 IR0 5 g (o Yo 0 (3 o) o S 18

7.3.2. Change Set PrOCESSIIIEottt ettt ettt e e e e e e i e e et e iiee e 19
INtrOdUCHION. . . . oottt 19
INSerting a NEeW featUre.ttt et et e e 19

7.3.3. Updating an existing featurettt i et 19
Deleting features. . ..ottt e e 19

7.3.4. Synchronization Protocol.t i e 19
INtrOdUCHION. . . . oottt 19

7.3.5. No prior synchronization betweenthe peerscouiiiiiiniiiiineinnen. 19

7.3.6. Subsequent synchronization between peers.iviiiiiinetiiinneeennnnnn 22

7.3.7. Conflict reSOIULION e 24

7.4. Accessing the Change Setttt e et et et 24

741 INTOAUCHION. « o o v ettt ettt e e et e e e e e e 24

O 4 1 (o0 1<) ¢ U (o) ¢ U PP 24
XML ENCOAINE . o vttt ettt ettt e e e et e e e e e e e 24
KVP @NCOAING . . . vttt ettt et et e e et e e e ettt e 26

743, [SYIICTESOULCE &« v v v ettt e et e et e e e et e e e e et e e e e et ie e e et tee e e iee e 31

7.4.4. Custom HTTP headersttt i 31

T4, S, RESPONIS . . .ttt e 32
INtrOdUCHION. . . . oottt 32
XML TSPOIISE . . ettt ettt et et e e e e et e e e e e e e e 32
JSON TS POIISE . . . ettt ettt et e e e e e e e 34

7.5. Relationship t0 GSS ... oottt e 34

Appendix A: Technical ReVIEW COMMENTS.ottt ittt e e iiie e 36

Publication Date: 2016-mm-dd

Approval Date: 2016-mm-dd

Posted Date: 2016-10-31

Reference number of this document: OGC 16-044

Reference URL for this document: http://www.opengis.net/doc/PER/t12-wfs-sync
Category: Public Engineering Report

Editor: Panagiotis (Peter) A. Vretanos

Document source: http://www.pvretano.com/Projects/tb12/WFS_Sync/16-044.zip

Title: Testbed-12 Web Feature Service Synchronization

OGC® Engineering Report
COPYRIGHT

Copyright © 2016 Open Geospatial Consortium. To obtain additional rights of
use, visit http://www.opengeospatial.org/

WARNING

This document is not an OGC® Standard. This document is an OGC® Public
Engineering Report created as a deliverable in an OGC® Interoperability
Initiative and is not an official position of the OGC® membership. It is
distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC® Standard. Further, any OGC® Engineering
Report should not be referenced as required or mandatory technology in
procurements. However, the discussions in this document could very well lead
to the definition of an OGC® Standard.

http://www.opengis.net/doc/PER/t12-wfs-sync
http://www.pvretano.com/Projects/tb12/WFS_Sync/16-044.zip
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"),
free of charge and subject to the terms set forth below, to any person obtaining a
copy of this Intellectual Property and any associated documentation, to deal in
the Intellectual Property without restriction (except as set forth below),
including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to
permit persons to whom the Intellectual Property is furnished to do so, provided
that all copyright notices on the intellectual property are retained intact and
that each person to whom the Intellectual Property is furnished agrees to the
terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual
Property must include, in addition to the above copyright notice, a notice that
the Intellectual Property includes modifications that have not been approved or
adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY
RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE
WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL
PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE.
ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY
CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL
PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER
LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE
IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by

destroying the Intellectual Property together with all copies in any form. The
license will also terminate if you fail to comply with any term or condition of
this Agreement. Except as provided in the following sentence, no such
termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the
operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be
likely to infringe, any patent, copyright, trademark or other right of a third
party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party.
You agree upon termination of any kind to destroy or cause to be destroyed the
Intellectual Property together with all copies in any form, whether held by you
or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder
of a copyright in all or part of the Intellectual Property shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such
copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other
special designations to indicate compliance with any LICENSOR standards or
specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts.
The application to this Agreement of the United Nations Convention on
Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void
or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be
a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may
be downloaded or otherwise exported or reexported in violation of U.S. export
laws and regulations. In addition, you are responsible for complying with any
local laws in your jurisdiction which may impact your right to import, export or
use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make
this license enforceable.

Abstract

This engineering report describes a protocol for synchronizing data between
two enterprise servers. While the protocol itself is generic, this engineering
report describes its application to web feature servers.

In the simplest terms, the protocol involves each synchronization peer accessing
the other’s "Sync" resource to get the set of changed objects since the last time
the "Sync" resource was accessed. In the case of web feature servers, the objects
are features. The requesting peer then compare that list of changed features
with the identically identified features in its data store and performs any
necessary changes so that the feature states match.

Continuing the work done in Testbed-11, this engineering report describes the
implementation of a Sync operation in a WFES server that:

1. Enhances the Sync operation from Testbed-11 to include an abstract query
element where each service type can then substitute their specific query
syntax for identifying the specific sub-set of changed features to be
synchronized. In the case of the WFS, several query syntaxes may be used
including the wfs:Query element and a REST based feature type URI with
query parameters.

2. Extends the definition of the Sync operation with the addition of a
"resultType" parameter to allow a client to obtain a hit count of the number
of features that a Sync operation shall return.

3. Shall investigate the proper procedure for handling resource references.
Implementing the resolvePath parameter alone is not sufficient to ensure
complete data set synchronization.

4. Shall investigate concurrency and consistency issues.

With regard to the resolvePath parameter; in order to be able to
test the use of this parameter, the feature encoding needs to
support the ability to reference resources (i.e. property values,

NOTE other features, etc.). Although Testbed-11 used GeoJSON, this
format is not sufficiently mature in this regard and so we propose
using GML as the feature encoding format for this round of sync
testing.

Business Value

Data synchronization is a fundamental means by which data consistency is

achieved and maintained over time between a source and target data system. It
is fundamental to a wide variety of applications including, for example, file
synchronization and synchronization between mobile devices and especially in
a low-connectivity environment such as might exist after a natural disaster.
Anyone who has ever synchronized their iPod/iPhone with iTunes has
experienced data synchronization in action.

What does this ER mean for the Working Group and OGC® in general

With regard to the WFS/FES SWG, this engineering report defines the means by
which peer-to-peer data synchronization can be performed with web feature
services. This can be synchronization between two web feature services or
synchronization between a web feature service and some other system (e.g. a
web processing service that manages geopackages).

With regard to the GeoSynchronization 1.0 SWG, the current draft GSS standard
defines a publish-subscribe architecture for synchronization between services
with the GeoSynchronization service acting as the broker. This engineering
report describes and alternative synchronization architecture that should be
considered by the GSS SWG.

Although the testing platform for synchronization for Testbed-12 is the web
feature service, the protocol described in this engineering report is applicable to
a number of OGC® standards and so there is a strong likelihood that some of the
elements of the description should end up in the OWS Common standard.

For the OGC® in general, this engineering report defines a generic
synchronization protocol that can be used to maintain data consistency across a
variety of systems ranging from the very small (e.g. mobile devices with
geopackages) to the very large (e.g. enterprise level data services such as web
feature services).

How does this ER relates to the work of the Working Group

Although the protocol described in this engineering report is generic, the web
feature service was used as the testing platform in Testbed 12. As such, this
engineering report describes modification and extensions to the web feature
service standard that need to be considered by the WES/FES SWG.

As mentioned above, one part of the GSS draft standard describes a publish-
subscribe architecture for synchronization. The work described in this
engineering report is directly related to synchronization and is thus directly

related to the work of the GSS SWG.

Although the WFS was used as a testing platform, the synchronization protocol
described in this engineering report is generic and could be applicable to a
variety of OGC® standards. As such, it is related to one of the primary purposes
of the OWS Common 1.2 SWG which is to collect common elements among
OGC® standards (e.g. BBOX encoding) into a single standard where this
information can be referenced rather than be copied over and over.

Keywords

ogcdocs, testbed-12, synchronization, web feature service, WFS, filter, change
set, low connectivity, checkpoint, service identifier, REST, XML, KVP

Proposed OGC® Working Group for Review and Approval

This engineering report shall be submitted to the WFS/FES SWG, the
GeoSynchronization 1.0 SWG and the OWS Common 1.2 SWG for review and
comment.

Chapter 1. Introduction

1.1. Scope

This engineering report defines a generic synchronization protocol that is applicable to a variety of
OGC® services.

This engineering report specifically describes the implementation of this synchronization protocol
for web feature services.

This engineering report defines a Sync operation for services that implement one or more of a KVP-
GET, XML-POST or SOAP request pattern(s).

This engineering report defines a sync resource for services that implement a REST architectural
style.

This engineering report defines the XML encoding of the messages exchanged between
synchronization peers.

1.2. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Table 1. Contacts

Name Organization
Jeff Harrison The Carbon Project
Mark Mattson The Carbon Project

Panagiotis (Peter) A. CubeWerx Inc.
Vretanos

1.3. Change requests

No change requests where posted as a result of the work described in this ER.

1.4. Future Work

1. For the WES, define a JSON encoding for the messages exchanged between synchronizing peers
2. Test the sync protocol for transactional data services other than WFS
3. Test the sync protocol between GeoPackages

4. Investigate, compare and recommend conflict resolution strategies

1.5. Foreward

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

Chapter 2. References

The following documents are referenced in this document. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated references, the
latest edition of the normative document referred to applies.

0OGC 06-121r9, OGC® Web Services Common Standard

0GC 14-102, OGC® Web Feature Service 2.5 Interface Standard

OGC 14-103, OGC® Filter Encoding 2.5 Encoding Standard

OGC 15-011r1, OWS-11 Case Study of Multiple WFS-T Interoperability ER

Chapter 3. Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard [OGC 06-121r9] shall apply. In addition, the following terms and
definitions apply.

3.1. attribute <XML>

name-value pair contained in an element <XML> (see ISO 19136:2007, definition 4.1.3)

NOTE In this document an attribute is an XML attribute unless otherwise specified.

3.2. client

software component that can invoke an operation from a server (see ISO 19128:2005, definition 4.1)

3.3. element <XML>

basic information item of an XML document containing child elements, attributes and character
data (see ISO 19136:2007, definition 4.1.23)

3.4. feature

abstraction of real world phenomena (see ISO 19101:2002, definition 4.11)

A feature can occur as a type or an instance. The term "feature type" or "feature

NOTE instance" should be used when only one is meant.

3.5. feature identifier

identifier that uniquely designates a feature instance

3.6. filter expression

predicate expression encoded using XML (see OGC 14-103, definition 4.11)

3.7. interface

named set of operations that characterize the behaviour of an entity (see ISO 19119:2005, definition
4.2)

10

3.8. Multipurpose Internet Mail Extensions (MIME)
type

media type and subtype of data in the body of a message that designates the native representation
(canonical form) of such data (see IETF RFC 2045:1996)

3.9. namespace <XML>

collection of names, identified by a URI reference which are used in XML documents as element
<XML> names and attribute <XML> names (see W3C XML Namespaces:1999)

3.10. operation

specification of a transformation or query that an object may be called to execute (see ISO
19119:2005, definition 4.3)

3.11. property

facet or attribute of an object, referenced by a name (see OGC 14-103, definition 4.21)

3.12. resource

asset or means that fulfills a requirement (see ISO 19115:2003, definition 4.10)

In this International Standard, the resource is a feature, or any identifiable

NOTE component of a feature (e.g. a property of a feature)

3.13. remote resource

resource that is not under direct control of a system
In this International Standard, the system is a web feature service. The resource is

NOTE not held in any data store that is directly controlled by that service and thus cannot
be directly retrieved by the service.

3.14. request

invocation of an operation by a client (see ISO 19128:2005, definition 4.10)

3.15. response

result of an operation returned from a server to a client (see ISO 19128:2005, definition 4.11)

11

3.16. schema

formal description of a model (see ISO 19101:2002, definition 4.25)

In general, a schema is an abstract representation of an object’s characteristics and
relations to other objects. An XML schema represents the relationship between the
attributes and elements of an XML object (for example, a document or a portion of a
document).

NOTE

3.17. schema <XML Schema>

collection of schema components within the same target namespace <XML> (see ISO 19136:2007,
definition 4.1.54)

3.18. server

particular instance of a service (see ISO 19128:2005, definition 4.12)

3.19. service

distinct part of the functionality that is provided by an entity through interfaces (see ISO
19119:2005, definition 4.1)

3.20. service metadata | capabilities document

metadata describing the [operations] and geographic information available at a server (see ISO
19128:2005, definition 4.14)

3.21. Uniform Resource Identifier

unique identifier for a resource, structured in conformance with IETF RFC 2396 (see ISO
19136:2007, definition 4.1.65)

The general syntax is <scheme>::<scheme-specified-part>. The hierarchical syntax

NOTE with a namespace <XML> is: <scheme>://<authority><path>?<query> Conventions

12

Chapter 4. Abbreviated terms

Table 2. Abbreviations

API
COTS
DCE
DCOM
IDL
CGI
CRS
DCP
EPSG
FES
GML
HTTP
HTTPS
IETF
KVP
MIME
0GC®
OWS
SQL
SOAP
UML
URI
URL
URN
VSP
WES
WSDL
XML

Application Program Interface
Commercial Off The Shelf
Distributed Computing Environment
Distributed Component Object Model
Interface Definition Language
Common Gateway Interface
Coordinate Reference System
Distributed Computing Platform
European Petroleum Survey Group
Filter Encoding Specification
Geography Markup Language
Hypertext Transfer Protocol

Secure Hypertext Transfer Protocol
Internet Engineering Task Force
Keyword-value pairs

Multipurpose Internet Mail Extensions
Open Geospatial Consortium

OGC® Web Service

Structured Query Language

Simple Object Access Protocol
Unified Modelling Language
Uniform Resource Identifier
Uniform Resource Locator

Uniform Resource Name

Vendor Specific Parameter

Web Feature Service

Web Services Description Language

Extensible Markup Language

13

Chapter 5. Overview

The synchronization work described in this engineering report is a continuation of work that was
begun in Testbed 11 and described in the document OGC 15-011r1, OWS-11 Reference Case Study of
Multiple WFS-T Interoperability ER.

Although the synchronization protocol describe in this engineering report is generic, the primary
concern of this document is describing synchronization between web feature services.

The synchronization protocol is based on the concept of a change set. A change set is a list of data
objects that have changed, from some specified checkpoint, that is exchanged between
synchronization peers.

Clause Components describe the components used in Testbed 12 as the test platform for
synchronization .

Clause Synchronizing features describes how features listed in a changes set should be processed
by a requesting peer.

Clause Accessing the change set defines the operations, resources and messages that are necessary
of accessing the change set of a server.

14

Chapter 6. New Requirements Statement

6.1. Status Quo

The current synchronization protocol is defined in document OGC 15-010r4, OGC® Testbed-11 WFS-
T Information Exchange Architecture. As defined in OGC 15-010r4, the protocol allows
synchronizing peers to request each other’s change sets since some specified checkpoint on a per-
feature-type basis.

6.2. Requirements Statement

There are several issues with the synchronization protocol as defined in OGC 15-010r4:

First, there is no way for a requesting peer to determine the size of the change set that a responding
peer would generate in response to a sync request. Thus, a means is required for a requesting peer
to be able to request the size of the changes set since some specified checkpoint. This is akin to the
resultType parameter defined for WFS GetFeature request (see OGC 14-102, 7.6.3.6).

Second, if a requesting peer is only interested in a subset of features defined by some filter, there is
no means for the requesting peer to indicate that the responding peer prune the change set based
on that filter.

Finally, there is no means currently defined for a requesting peer to request that the responding
peer resolve references that might exists in the features in the change set. Thus a means is
required for a requesting peer to be able to specify that the responding peer resolve references.
This is akin to the resolve parameters defined for the WFS GetFeature request (see OGC 14-102,
7.6.4).

15

Chapter 7. Peer-to-peer enterprise web
feature server synchronization

7.1. Introduction

This clause describes the peer-to-peer synchronization protocol implemented to satisfy the
enterprise-to-enterprise data synchronization use case for OGC® Testbed 12.

7.2. Components

Figure 2 illustrates the components involved in the OGC® Testbed 12 enterprise-to-enterprise
synchronization experiment.

Sync
operation

Sync
operation

Figure 1. Component diagram for Synchronization experiment

The experiment was performed between two WESs; the Carbon WFS and the CubeWerx WFS. WFS
product versions and end points lists the product versions and endpoint of the servers.

Table 3. WFS product versions and end points

Vendor Product Supported Endpoints
WES
Versions
CubeWerx CubeWerx 1.0.0 + https://tb12.cubewerx.com/a011/cubeserv/default/wfs/
Suite 8.1.1 2.0.2/sync
Carbon Carbon Cloud 1.0.0 + http://ows12.azurewebsites.net/wfs
WES

Both servers implement the WFS standard with the REST binding (see OGC 11-080r1). Furthermore,
each server implements the newly specified Sync resource (see 8.3) which allows the servers to
synchronize the state of their features.

Server capabilities lists the specific capabilities of each server used in the experiment. Cross-
walking the capabilities resulted in the experiment being performed using features encoded with
GML. In other words, when the server exchange features through the "Sync" resource, those

16

https://tb12.cubewerx.com/a011/cubeserv/default/wfs/2.0.2/sync
https://tb12.cubewerx.com/a011/cubeserv/default/wfs/2.0.2/sync
http://ows12.azurewebsites.net/wfs

features are encoded using GML.

Table 4. Server capabilities

Property
Versions

Operations

Output Formats

Spatial operators

Spatial operands

CubeWerx
1.0.0 +

GetCapabilities
DescribeFeatureType
GetFeature
ListStoredQueries

DescribeStoredQueries

GetPropertyValue
Transaction

Sync

GET

PUT

POST

DELETE

GML v3.2
GMLv3.1.1
GML v2.1.2
GeoJSON
KML
SHAPE
ATOM

RSS

HTML

Disjoint
Equals
Intersects
Touches
Crosses
Contains
Overlaps
BBOX
Within

gml:Envelope
gml:Point
gml:LineString
gml:Polygon

gml:CircleByCenterPoint

Carbon
1.0.0 +

GetCapabilities
DescribeFeatureType
GetFeature

Sync

Transaction

GET

PUT

POST

DELETE

GML v3.2
GMLv3.1.1
GML v2.1.2
GeoJSON
KML

CSv
TopoJSON

Disjoint
Equals
Intersects
Touches
Crosses
Contains
Overlaps
BBOX
Within
Beyond

gml:Envelope
gml:Point
gml:LineString
gml:Curve
gml:Polygon
gml:Surface
gml:MultiPoint
gml:MultiLineString
gml:MultiCurve
gml:MultiPolygon
gml:MultiSurface

17

Property

Scalar operators

Logical

Available Stored
Queries

Number of CRSs

Support for GML
SF

REST API
Geo]SON
ATOM

XSLT vendor
extension

CubeWerx

PropertylsBetween
PropertyIsEqualTo
PropertylsGreaterThan
PropertyIsGreaterThanOrEqualTo
PropertylsLessThan
PropertyIsLessThanOrEqualTo
PropertylIsLike
PropertyIsNotEqualTo
PropertyIsNull

And, Or, Not

GetFeatureByld
NearestNeighbours

>10

Yes

Yes
Yes
Yes

Yes

7.3. Synchronizing features

7.3.1. Introduction

Carbon

PropertylsBetween
PropertyIsEqualTo
PropertylsGreaterThan
PropertylsGreaterThanOrEqualTo
PropertyIsLessThan
PropertyIsLessThanOrEqualTo
PropertylIsLike
PropertyIsNotEqualTo

And, Or

None

>10

Yes

Yes
Yes
No

No

The synchronization protocol assumes that each peer can, upon request, identify for the other peer
which data has changed since a previous checkpoint. In the case of web feature services, this
means that a responding WFS can identify which features have changed for a specified feature type
since a previous checkpoint. This set of changed data, or features in the case of a WFS, is called the
change set.

The process of synchronization involves one peer, the requesting or client peer, requesting from
the other peer, the responding or server peer, a change set from some specified checkpoint.

This engineering report describes an XML encoding for the change set that includes a standard
wfs:FeatureCollection, for listing all newly created and modified existing features, and a list of
feature identifiers that lists the features that have been deleted from the server.

The specific focus of Testbed 12 is the web feature service, however the protocol is sufficiently
generic to work between any two peers as long as the encoding for the change set is defined. For
example, this protocol could be used to sync geopackages (see GeoPackage Mobile Apps
Integrations, OGC 16-030) in the field where the change set itself is encoded as a geopackage.

18

7.3.2. Change set processing

Introduction

This clause briefly describes how inserted, updated and/or deleted features appearing in a change
set should be processed by a requesting peer.

Inserting a new feature

If a requesting peer encounters a feature in the change set that does not currently exist in its
repository, then the requesting peer shall create an identical new feature in its repository.

The new feature shall be retrievable using the identifier provided by the responding peer.

In general, when creating a new feature, a web feature service may assign its own
identifier to a feature. This is perfectly fine as long as the server maintains the
relationship between its own identifier and the identifiers provided by its
synchronizing partners. In other words, a feature in a server that supports
synchronization may be retrievable using any number of gml:id values in addition
to the one that a server natively assigns to the feature.

NOTE

7.3.3. Updating an existing feature

If a requesting peer encounters a feature in the change set that already exists in its repository then
it shall update the state of its copy to match that for the responding peer.

Deleting features

If a requesting peer encounters a feature in the change set that has been deleted then it shall delete
that feature from its repository. The question of how deleted features are represented in the
changeset is discussed in the synchronization response clause.

7.3.4. Synchronization protocol

Introduction

Servers that implement one or more of the KVP-GET, XML-POST or SOAP bindings shall implement
the Sync operation that may be used to retrieve the change set. This operation shall be advertised in
the server’s capabilities document in the standard way.

Servers implementing the REST architectural style shall provide a /sync resource to which the
appropriate query parameters may be appended in order to retrieve the change set.

7.3.5. No prior synchronization between the peers

This clause describes the messages exchanged between a requesting and responding peer when
there has been no prior synchronization between the peers. For the purpose of discussion the
requesting peer is called alpha and the responding peer is called beta. The synchronization
proceeds as follows:

19

» Alpha requests a change set from beta.

» Since alpha and beta have never synchronized before, beta generates a change set for alpha
that contains all the features of the specified type.

» The canonical format of the response shall be GML 3.2; other formats are allowed but they
are not defined is this engineering report.
* Alpha reads the checkpoint value from the HTTP header of the response and saves it in order to
retrieve the next change set.

 Alpha processes the change set and synchronizes its repository with that of beta.
For servers implementing a REST architectural style, the following example sequence diagram
illustrates this exchange:

* alpha service Id = 052350f2-70ca-4201-837d-15f2af7ed15c

* beta service Id =e039611a-198a-474a-800d-763f79bf6ec5

20

alpha
|

beta
I

| GET /sync?TYPENAME=InWaterA_TM&SERVICEID=urn:uuid:0523...d15¢c HTTP/1.1 |

| Host: www.alpha.com
| Accept: application/gml+xml; version=3.2

I
I
e e >|
I |
| HTTP/1.1 200 OK I
| Host: www.beta.com |
| Content-Type: application/gml+xml; version=3.2 |
| 0GC-SYNC-Serviceld: urn:uuid:e039611a-198a-474a-800d-763f79bf6ech |
| 0GC-SYNC-Checkpoint: urn:uuid:4dc@1e43-8cf8-4d8b-875e-0ee110eb2a75 |
I I
| <?xml version="1.0"?> |
| <wfs:ChangeSet |
| serviceld="urn:uuid:e039611a-1983-4743-800d-763f79bfbech" |
| checkPoint="urn:uuid:4dc@1e43-8cf8-4d8b-875e-0ee110eb2a75"> |
| <wfs:FeatureCollection timestamp="2016-04-08T12:26:25" |
| numberMatched="525" |
| numberReturned="525" ... /> |
I I
I I
I : I
| <wfs:member> |
| . |
| <InWaterA_1M gml:id="1013"> |
| . |
| </InWaterA_1M> |
| . |
| </wfs:member> |
I |
I I
I : I
| </wfs:FeatureCollection> |
| <wfs:DeletedObjects> |
| <fes:Resourceld fid="1013"/> |
| </wfs:DeletedObjects> |
| </wfs:ChangeSet> |
| Qmmm +

Practically speaking this initial synchronization scenario is only feasible if beta does

not already contain too great a volume of data. In this more likely scenario, one

possible approach would be to export beta’s data and define a checkpoint that

NOTE signifies this point in time and is distributed with the export. Alpha can then be

seeded with beta’s data using some other, more rapid, means and normal peer-to-
peer synchronization can proceed from then on using the accompanying checkpoint
value.

21

A server that implement the sync operation must do two things: (a) it must keep
track of changes changes made to all the features that it offers and (b) for each
requester, it must keep track of the checkpoints in order to know up to which point
each requester has been sync’ed. Requesters are identified using the serviceld
parameter and the checkpoints are pointers into the tracked changes list indicating
that the requester is synced to that point

NOTE

7.3.6. Subsequent synchronization between peers

In the case where the participating peers alpha and beta have previously synchronized, the
protocol proceeds as follows.

* Alpha requests a change set from beta using the checkpoint from the previous sync..

* The response is a wfs:FeatureCollection document containing the features that have changed
since the specified checkpoint value.

For servers implementing a REST architectural style, the following example sequence diagram
illustrates this exchange:

22

alpha beta

I
| GET /sync?TYPENAME=InWaterA_1M

| &SERVICEID=urn:uuid:052350f2-70ca-4201-837d-15f2af7ed15¢c

| &CHECKPOINT=urn:uuid:4dc@1e43-8cf8-4d8b-875e-0ee110eb2a75 HTTP/1.1
| Host: www.alpha.com

| Accept: application/gml+xml; version=3.2

HTTP/1.1 200 OK

Host: www.beta.com

Content-Type: application/gml+xml; version=3.2

0GC-SYNC-Serviceld: urn:uuid:e039611a-198a-474a3-800d-763f79bfbec5
0GC-SYNC-Checkpoint: urn:uuid:a4e9819b-2139-47cf-b297-7656a9dada00

<?xml version="1.0"7>

<wfs:ChangeSet
serviceld="urn:uuid:e039611a-198a-4743-800d-763f79bfbechH"
checkPoint="urn:uuid:a4e9819b-2139-47cf-b297-765639da0a0d0">
<wfs:FeatureCollection timestamp="2016-04-10T12:12:57"

numberMatched="5"

numberReturned="5" ... />

I

I

|

|

|

|

|

I

|

|

I

I

I

I

|

|

| .

| <wfs:member>

| <InWaterA_1M gml:id="3764">...</InWaterA_1M>
| </wfs:member>

| <wfs:member>

| <InWaterA_TM gml:id="1154">...</InWaterA_1M>
| </wfs:member>

| <wfs:member>

| <InWaterA_1M gml:id="72">...</InWaterA_1M>
| </wfs:member>

|
|
|
|
|
|
I
|
I
I
I
I
|

</wfs:FeatureCollection>
<wfs:DeletedObjects>
<fes:Resourceld fid="101"/>
<fes:Resourceld fid="47625"/>
<fes:Resourceld fid="1783"/>
<fes:Resourceld fid="5534"/>
<fes:Resourceld fid="3"/>
</wfs:DeletedObjects>
</wfs:ChangeSet>

NOTE Alpha and beta can reverse roles in order to achieve bi-directional synchronization.

7.3.7. Conflict resolution

Conflicts arise when the same feature property is updated with different values on synchronizing
peers during the inter-sync period. For example, consider the following sequence of events:

PEER 1 PEER 2
T1 A=10 A=10
T2 A=20 A=30
13 A=30 <------ SYNC -------- A=30
T4 A=30 ------- SYNC ------- > A=30

At T1, peer 1 and peer 2 are synchronized. At T2 an update occurs on each server that changes the
value of A on peer 1 to 20 and the value of A on peer 2 to 30. The problem arises when the next
synchronization between peer 1 and peer 2 occurs. Without intervention one of these updates will
be lost depending on which peer first acts as the server peer on the next sync. Say peer 1 initiates
the synchronization by executing the Sync operation on peer 2 at T3. Peer 1 will receive the value
of 30 for A and update its A value to 30. When peer 2 performs the subsequent complimentary sync
at T4, it will read the value 30 from peer 1 and do nothing. The fact that on peer 1 A had a value of
20 will be lost. Ideally the synchronizing server should detect this situation and then perform some
sort of conflict resolution. For Testbed 12, the CubeWerx server can detect this conflict but does not
currently implement any resolution strategy.

This engineering report acknowledges this problem but does not offer a specific solution since
there are a number of conflict resolution strategies— with the goal of data convergence between
the synchronizing peers —that would need to be implemented and tested and this work is beyond
the scope of work possible with the time and resources available in TB12. This is left as a future
work item.

7.4. Accessing the change set

7.4.1. Introduction
This clause defines how the change set may be retrieved by a requesting peer.

This clause defines the encoding of the Sync operation for servers that implement KVP-GET, XML-
POST or SOAP encoded requests.

This clause also defines the /sync resource for servers that implement a REST architectural style.

7.4.2. Sync operation

XML encoding

The following XML-fragment declares the XML-encoding for the Sync operation:

24

<xsd:element name="Sync" type="wfs:SyncType"/>
<xsd:complexType name="SyncType">
<xsd:complexContent>
<xsd:extension base="wfs:GetFeatureType">
<xsd:attribute name="serviceld" type="xsd:AnyURI" use="required"/>
<xsd:attribute name="checkpoint" type="wfs:AnyURI"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

The Sync operation extends the WFS GetFeature only for the purpose of inheriting syntax because
the required encoding of the Sync operation looks very much like a GetFeature request. However,
the semantics of the Sync operation are different than those of the GetFeature operation in that the
Sync operation only operates on the restricted subset of features that are members of the change
set.

The features that are members of a change set is determined independently of the Sync operation
and is a time dependent function of the transaction operations executed on the server between
checkpoints. This implies that any filter specified on the Sync operation, for example, has no effect
on the set of features that appear in the change set of a feature type between checkpoints. The filter
only has an effect at the time the change set is to be transmitted from the server to the client.
Consider a client that is only interested in changes in a particular area. Without a filter, the entire
change set would e transmitted to the client and the client would have to prune the change set
keeping only the features of interest and discarding the rest. The filter on the Sync operation is
simply a way for the client to tell the server to prune the set before transmitting it. Regardless of
any filter specified on the Sync operation, the sync checkpoints remain sequential. This description
applies generally to all Sync operation parameters in that their scope is restricted to the features
that are members of the change set.

The following table lists the parameters of a Sync operation and describes how they operate
differently (or not) than those used with a GetFeature operation:

Table 5. Sync request parameter restrictions

Parameter Name Description

service As described in OGC 14-102, clause 7.6.2
version As described in OGC 14-102, clause 7.6.2
handle As described in OGC 14-102, clause 7.6.2
startIndex As described in OGC 14-102, clause 7.6.3 but its scope is restricted

to the features in the change set

count As described in OGC 14-102, clause 7.6.3 but its scope is restricted
to the features in the change set

resultType As described in OGC 14-102, clause 7.6.3 but its scope is restricted
to the features in the change set

25

Parameter Name Description

outputFormat As defined in clause Response; other output formats are allowed
but not defined in this document

resolve As described in OGC 14-102, clause 7.6.4 but its scope is restricted
to the features in the change set

resolveDepth As described in OGC 14-102, clause 7.6.4 but its scope is restricted
to the features in the change set

resolveTimeout As described in OGC 14-102, clause 7.6.4 but its scope is restricted
to the features in the change set

namespaces As described in OGC 14-102, clause 7.6.6

vsp Vendor-specific parameters are allowed for the KVP-encoded Sync
request but their meaning is not described in this document

typeNames As described in OGC 14-102, clause 7.9.2.4.1 but restricted to a
single feature type

schema-element() As described in OGC 14-102, clause 7.9.2.4.2

aliases As described in OGC 14-102, clause 7.9.2.4.3 but restricted to a
single feature type

srsName As described in OGC 14-102, clause 7.9.2.4.4
projection clause As described in OGC 14-102, clause 7.9.2.4.5, 7.9.2.4.6
resolution path As described in OGC 14-102, clause 7.9.2.4.7

selection clause As described in OGC 14-102, clause 7.9.2.5 but its scope is
restricted to the feature in the changes set and joins of any kind
are not supported

sorting clause As described in OGC 14-102, clause 7.9.2.5.4 but its scope is
restricted to the features in the change set

stored query Not considered for this testbed

expressions

The following conformance WEFS conformance classes from OGC 14-102, related to retrieving
features from the server, are incompatible with the sync operation:

* Locking WFS

» Standard joins

 Spatial joins

* Temporal joins
KVP encoding

This clause defines the KVP-encoding for the Sync operation.

The following table, _Keywords for KVP-encoded Sync operation, describes the parameters for the

26

KVP-encoding of the Sync operation:

Table 6. Keywords for KVP-encoded Sync operation

URL Component

Common KeyWords
(REQUEST=Sync)

Standard
Presentation
Parameters

Standard Resolve
Parameters

Additional common
keywords

TYPENAMES

SRSNAME
Projection clause

Selection clause
(see KVP-encoding
for selection clause,
Additional selection
clause parameters)

o/M

Mandatory

Optional
Optional

Optional

Description

See Table 4, OGC 14-102 for additional parameters
that may be used

See Table 5, OGC 14-102

See Table 6, OGC 14-102

See Table 7, OGC 14-102

Name of single, feature type to synchronize (joins
not supported)

See 7.9.2.4.2, OGC 14-102
See Table 9, 14-102

The selection clause may be used to constrain the set
of change set of new or modified features that are
presented to a requesting peer is a response
document. The complete syntax for specifying the
selection clause is presented in KVP-encoding for
selection clause and Additional selection clause
parameters below.

All KVP parameters are subject to the restrictions described the Sync request
parameter restrictions table.

NOTE

The canonical output format for the Sync operation is GML 3.2 (ie.
NOTE application/gml+xml; version=3.2). Other output formats are allowed but are not
described in this engineering report.

The following tables, KVP-encoding for selection clause and Additional selection clause parameters
define the parameters for a selection clause.

Table 7. KVP-encoding for selection clause (see Table 3, OGC 14-103)

URL Component

FILTER

oM Description

0 The value of the parameter shall be a filter expression
encoded using the language specified by the
FILTER_LANGUAGE parameter

27

URL Component oM Description

FILTER_LANGUAGE O Indicate the predicate language used to encode the filter
expression that is the value of the FILTER parameter.
The default value of urn:ogc:def:queryLanguage:OGC-
FES:Filter shall be used to indicate that the value of the
FILTER parameter is a string encoding the filter using an
XML fragment as defined in OGC 14-103.

Table 8. Additional selection clause parameters (see Table 3a, OGC 14-103)

Query class Query URL OpenSearch Description Data type and
subclass Component Parameter(s) value
Text search’ N/A Q searchTerms A space Character

separated list string
of search terms

that are used to
search all text

fields in a

catalogue

record.

FeatureByld N/A RESOURCEIDS Uid Comma Character
search separated list string

of record

identifiers to

retrieve.

28

Query class

Spatial search

Query
subclass

URL
Component

OpenSearch
Parameter(s)

Description

Data type and
value

29

M measure used string (see
to express the http://unitsofm
value of the easure.org/ucu
Query class Query URL OpenSearch Dissenijgtion Daliariy)pe and
subclass Component Parameter(s) parameter value
Proximity LAT lat Latitude Number
search’ expressed in
WGS84
LON lon Longitude Number
expressed in
WFS84
RADIUS radius Search radius Number
expressed in
meters along
the surface of
the Earth
Temporal N/A TIME start/end A time instance Character
search or time period string (see
http://www.w3.
org/TR/NOTE-
datetime)
TRELATION N/A The temporal - Character

1. Default for a time instance.
"q" parameter is expected to proceed as follows:.
valued properties of a feature.

2. Default of a time period.
a. Math against the full text of all character-

b. Matching is case-insensitive.

operator to
apply using the
value of the
TIME
parameter

string; One of:
After Before
Begins
BegunBy
TContains
During
EndedBy
Ends
TEquals’
Meets MetBy
TOverlaps
OverlappedBy
AnyInteracts’

3. Basic text searching using the

c. In the case of multiple

search terms, if any of the property values being tested, as per (a), contains at least one of the
specified search terms then that feature shall appear in the result set. d. Exact phrases can be
delimited using quotations (i.e. 0x22 in ASCII). 4. When specified, the GEOMETRY parameter of
the Arbitrary Geometry Search subclass is mandatory. The other parameters are optional and if
not specified on a request assume the default values denoted in the "Data type and value" column.
5. When specified, the Proximity Search parameters are all mandatory

Tables KVP-encoding for selection clause and Additional selection clause parameters
are copied from OGC 14-103, OpenGIS Filter Encoding 2.5 Encoding Standard and
are presented here for convenience only.

NOTE

30

http://www.opengis.net/def/crs/epsg/0.4326
http://www.opengis.net/def/crs/epsg/0.4326
http://www.opengis.net/def/crs/epsg/0.4326
http://unitsofmeasure.org/ucum.html
http://unitsofmeasure.org/ucum.html
http://unitsofmeasure.org/ucum.html
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

The use of the parameters BBOX and GEOMETRY from Table 5, Additional
WARNING selection clause parameters in conjunction with the SYNC operation between
WES peers is subject to patent restrictions (see US patent 7873697).

The following table, Sync-specific parameters lists additional parameters that shall be appended to a
KVP-encoded Sync operation according to the specified obligation.

Table 9. Sync-specific parameters

URL Description Defau Obligation
Component It
Value

SERVICEID A unique identifier for the entity None Mandatory
making the request.

CHECKPOINT Identifies that last point of None Optional on
synchronization for the specified first sync;
serviceld Mandatory

thereafter.

7.4.3. [sync resource

For a service implementing the REST architectural style, the resource /sync is define and may be
accessed by a requesting peer to obtain the change set from a responding peer.

Tables Sync parameters, Additional selection clause parameters, Sync-specific parameters define
parameters that may be appended as query parameters to the /sync resource.

7.4.4. Custom HTTP headers

The synchronization protocol defined in this engineering report defines two custom HTTP headers
named OGC-SYNC-Serviceld and OGC-SYNC-Checkpoint.

The value of the OGC-SYNC-Serviceld header is used by a peer to communicate its unique service
identifier when communicating with its partner peer.

The value of the OGC-SYNC-Checkpoint uniquely identifies a point in time from which a responding
server shall generate a change set.

The format of both these values is opaque.

These headers shall be set by a responding peer to communicate its service identifier and the
checkpoint value to a requesting peer.

The OGC-SYNC-Serviceld header shall be set by a requesting peer to communicate its service
identifier to the responding peer. The OGC-SYNC-Checkpoint header shall not be set by a requesting
peer on its initial sync but shall be set by the requesting peer on all subsequent sync requests.

These parameters may be set by a requesting peer to communicate its service identifier and a
checkpoint value to a responding peer.

31

The query parameters SERVICEID and CHECKPOINT (see Sync-specific parameters
may also be used to communicate the service identifier and checkpoint values. If
both the query parameters and HTTP headers are set in any communication, then
the corresponding values shall match; otherwise an exception shall be generated.

NOTE

7.4.5. Response

Introduction

The response to accessing the /sync resource or executing a Sync operation is a change set. This
clause defines the encoding for a change set.

The response document contains the collection of features that is composed of the newly created
and updated features since a specified checkpoint. The response document also contains a list of
feature identifiers for features that have been deleted since that same specified checkpoint.

This encoding is easily adaptable to output formats other than GML (e.g. GeoJSON). It is also more
easily adaptable to synchronization in a heterogeneous system where the synchronizing peers are
not both web feature services (e.g. geopackage-to-geopackage synchronization or geopackage-to-wfs
synchronization). A drawback of this encoding is that it may require more processing by the
requesting peer, especially if that peer is a web feature service.

XML response

The following XML-fragment defines the default synchronization response (i.e. the output format is
set to application/gml+xml; version=3.2).

The response is a composed of a wfs:FeatureCollection element containing all the newly created
and modified features of a responding peer from a specified checkpoint and a wfs:DeletedObjects
element containing the identifiers of all deleted features of a responding peer from the same
specified checkpoint.

32

<xsd:element name="ChangeSet" type="wfs:ChangeSetType"/>
<xsd:complexType name="ChangeSetType">
<xsd:complexContent>
<xsd:sequence>
<xsd:element ref="wfs:FeatureCollection" minOccurs="0"/>
<xsd:element name="DeletedObjects" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="fes: Id"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="ConflictObjects" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="fes: Id"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="serviceId" type="xsd:anyURI" use="required"/>
<xsd:attribute name="checkPoint" type="xsd:anyURI"/>
<xsd:attribute name="numberOfFeatures" type="xsd:nonNegativeInteger"/>
</xsd:complexContent>
</xsd:complexType>

The serviceld parameter contains the unique service identifier of the responding peer. The specific
format of this identifier is not specified in this engineering report but it is strongly recommended
that a UUID be used.

The checkPoint parameter contains the new, opaque checkpoint value that may be used to obtain a
subsequent change set.

If the resultType parameter (see X.X) is set to "hits" when the Sync operation is executed then the
server shall NOT perform a checkpoint but rather return an empty change set document (see Note
below) with the value of the "numberOfFeatures" parameter set to the number of features that
would be presented to the client if the checkpoint was actually performed.

If a server detects conflicts in the course of computing the number of features that
NOTE the sync operation would return, those conflicts may be listed in the ConflictObject
section of the response document.

In order for a responding peer to communicate to a requesting peer which features have been
deleted, the synchronization response document shall contain a list of of feature identifiers (see 7.2,
OGC 14-102) from the responding peer that have been deleted. These shall be encoded using the
wis:DeletedObjects element in the change set. The content of the wifs:DeletedObject element is
simply an unordered list of the feature identifiers of features (see 7.2, OGC 14-102) that have been

33

deleted.

(Point for discussion): Another implementation option for handling deleted features
would be to allow a requesting peer to make an additional synchronization request
with the same checkpoint that includes a parameter to indicate that the deleted
feature identifiers should be returned rather than the complete change set. This
approach is more complicated but has the added benefit that other output formats
can be supported without modification.

NOTE

In the situation where a synchronizing peer has detected conflicts, the server shall not synchronize
the conflicted feature but shall instead list their identifiers in the ConflictObject section of the
change set document.

JSON response

In the OGC® Testbed-11 experiment, the list of changed, modified or deleted features was encoded
using GeoJSON which was an output format that both participating servers supported. However,
GeoJSON lacks a number of necessary structures to meet the requirements of peer-to-peer
synchronization and so for Testbed-12 an XML response shall be used since it allows already-
existing structures such as wfs:FeatureCollection and/or wfs:Transaction to be reused.

7.5. Relationship to GSS

This clause discusses the relationship between the synchronization protocol describe herein and
the GeoSynchronization Service (GSS, see OGC 10-069r2).

The purpose of a GeoSynchronization service is to allow organizations to deploy a transactional
WES to a "crowd" without giving the crowd direct transactional access to the server. Rather the GSS
mediates the transactional interaction between members of the crowd and the WFS allowing the
organization to validate data before being committed to the server. In this sense a GSS is a
workflow manager for crowdsourcing WFSs. A convenient way to think about GSS is as an OGC®
standards-based version of Open Street Map. Unlike Open Street Map, however, which replies on
the crowd to verify data, the GSS enforces a more formal and mandatory approach to data
validation.

In addition to acting as a crowdsourcing manager, the GSS specification describes a subscription
subsystem that allows interested parties to be notified by a GSS whenever changes are committed
to the WFS that the GSS is managing. This subscription subsystem can also be used synchronize
interested third-party WFSs with the crowdsourced WFS that is managed by the GSS.

The current GSS synchronization subsystem is a master-slave, subscription-based, push
synchronization. This means that whenever a set of changes is committed to the crowdsourced
WES server managed by the GSS, the GSS will push those changes (via a WFS transactions) to
whichever third-party servers have subscribed to the GSS for the purpose of synchronization (see
7.2, 0GC 15-010r4).

By contrast, the enterprise-to-enterprise synchronization capability tested in the OGC® Testbed-12
describes the mechanism and protocol for synchronizing two peer WFSs but does not describe
when synchronization occurs or how it is triggered. It is a more light-weight synchronization

34

capability since no mediating or coordinating service such as GSS is required. However, only WFSs
that have implemented the necessary resources and protocol can participate in the synchronization
thus preventing legacy WESs for being synchronized. The GSS, on the other hand, does not require
any changes to the WFSs participating in a synchronization activity and so legacy as well as current
WESs can be synchronized. It seems reasonable, moving forward, that the enterprise-to-enterprise
synchronization protocol be integrated into the GSS as part of its synchronization subsystem.
However, time and resource limitation during the OGC® Testbed-11 did not allow for this
investigation to be performed and so this is flagged as a future work item.

35

Appendix A: Technical Review
comments

¢ Comment 1

Not sure you can reference 14-102 as it has never been uploaded outside of the SWG as pending for
the TC, let alone public.

* Response to comment 1
The reasons for referencing OGC 14-102 are:

* The servers deployed for this experiment using a REST binding of WFS. This binding is most
completely described in OGC 14-102.

» This work is experimental. By the time all the kinks have been worked out and the content of
this ER makes its was into the WFS specification, 14-102 will likely be an adopted version.

¢ Comment 2
In 7.4.4 you have:

» "These parameters shall be set by a responding peer to communicate its service identifier and
the checkpoint value to a requesting peer."

and

* "These parameters may be set by a requesting peer to communicate its service identifier and a
checkpoint value to a responding peer."

Does the responding server (beta) keep the record of requester and checkpoint? I do see where the
requester (alpha) keeps the responder and checkpoint. I thought you had mentioned that in a
telecon, but I missed it here. Is it optional for the responding server to store that record?

* Response to comment 2
In order for a server to implement the sync operation it must do 2 things:

1. It must keep track of all changes made to all the feature that is offers (i.e. an AUDIT TRAIL)

2. For each requester it must keep track of the checkpoints in order to know up to which point
each requester has been synced.

Requesters are identified using the "serviceld" parameter and the checkpoints are pointers into the
responder’s audit trail indicating that, that specific requester has sync’ed up to that point.

¢ Comment 3

In 7.4.2, If I, as Alpha, change my filter between requests, does that negate the checkpoint? Say I
want just schools within 1000 meters of me and we sync. Then I say I want schools within 2000
meters. Will the server limit the schools within 1000 meters response to changes since the sync and

36

then give all schools between 1000 and 2000 meters, or would it think of it as a new sync and give
all features within 2000 meters?

* Response to comment 3

Except for the initial sync, every sync request has to include a checkpoint and every sync response
(i.e. ChangeSet) has to include the next checkpoint to use. Put another way, any Sync request will
negate the checkpoint specified on the request once the operation has completed (because the
responding server will give you a new checkpoint each time). This is true whether there is a filter
on the Sync request or not. The filter has no effect on which records appear in the change set or the
checkpoint. The filter only affects which records from the change set are transmitted (or
presented) to the requester.

Explaining just a bit further, you said "Say I want just schools within 1000 meters of me and we
sync". The way you pose your question implies that it is the filter the determines which features
appear in the change set. This is not the case at all. It is the Transactions that have been executed
on the responding server that determine which features appear in the change set. Once the set of
changed features is known, THEN you can say give me all the schools in the change set that are
within 1000 meters of me. If no schools were modified (insert, update or delete) since the last
checkpoint, no schools will appear in the change set and so your "schools withing 1000 meters of
me" filter will not return any rows. How does the responding server know which features are in
the change set? It simply looks that information up in the AUDIT TRAIL that I mentioned in answer
to your first question.

37

	Testbed-12 Web Feature Service Synchronization
	Table of Contents
	Chapter 1. Introduction
	1.1. Scope
	1.2. Document contributor contact points
	1.3. Change requests
	1.4. Future Work
	1.5. Foreward

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. attribute <XML>
	3.2. client
	3.3. element <XML>
	3.4. feature
	3.5. feature identifier
	3.6. filter expression
	3.7. interface
	3.8. Multipurpose Internet Mail Extensions (MIME) type
	3.9. namespace <XML>
	3.10. operation
	3.11. property
	3.12. resource
	3.13. remote resource
	3.14. request
	3.15. response
	3.16. schema
	3.17. schema <XML Schema>
	3.18. server
	3.19. service
	3.20. service metadata|capabilities document
	3.21. Uniform Resource Identifier

	Chapter 4. Abbreviated terms
	Chapter 5. Overview
	Chapter 6. New Requirements Statement
	6.1. Status Quo
	6.2. Requirements Statement

	Chapter 7. Peer-to-peer enterprise web feature server synchronization
	7.1. Introduction
	7.2. Components
	7.3. Synchronizing features
	7.3.1. Introduction
	7.3.2. Change set processing
	Introduction
	Inserting a new feature

	7.3.3. Updating an existing feature
	Deleting features

	7.3.4. Synchronization protocol
	Introduction

	7.3.5. No prior synchronization between the peers
	7.3.6. Subsequent synchronization between peers
	7.3.7. Conflict resolution

	7.4. Accessing the change set
	7.4.1. Introduction
	7.4.2. Sync operation
	XML encoding
	KVP encoding

	7.4.3. /sync resource
	7.4.4. Custom HTTP headers
	7.4.5. Response
	Introduction
	XML response
	JSON response

	7.5. Relationship to GSS

	Appendix A: Technical Review comments

